Med Sci Sports Exerc 34:286–294PubMedCrossRef 10 Lanyon LE, Rubi

Med Sci Sports Exerc 34:286–294PubMedCrossRef 10. Lanyon LE, Rubin CT (1984) Static vs. dynamic loads as an influence

on bone remodelling. J Biomech 17:897–905PubMedCrossRef 11. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407PubMedCrossRef 12. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I (2002) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 17:2281–2289PubMedCrossRef 13. Lorentzon M, Mellstrom D, Ohlsson C (2005) Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the Selleck GS-4997 GOOD study. J Bone Miner Res 20:1936–1943PubMedCrossRef 14. Nilsson M, Ohlsson C, Mellstrom D, Lorentzon M (2009) Previous sport activity during childhood and adolescence is associated with increased cortical bone size in young adult men. J Bone Miner Res 24:125–133PubMedCrossRef 15. Nikander R, Sievänen H, Uusi-Rasi K, Heinonen A, Kannus P (2006) Loading modalities and bone

structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. A-1210477 ic50 Bone 39:886–Trichostatin A solubility dmso 894PubMedCrossRef 16. Fehling PC, Alekel L, Clasey J, Rector A, Stillman RJ (1995) A comparison

of bone mineral densities among female athletes in impact loading and active loading sports. Bone 17:205–210PubMedCrossRef 17. Nikander R, Sievänen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20:520–528PubMedCrossRef 18. Nikander R, Kannus P, Dastidar P et al (2009) Targeted exercises against hip fragility. Osteoporos Int 20:1321–1328PubMedCrossRef 19. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1:30–34PubMedCrossRef 20. Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA (1995) Genetic influences on bone turnover, Branched chain aminotransferase bone density and fracture. Eur J Endocrinol 133:265–271PubMedCrossRef 21. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357PubMedCrossRef 22. Karlsson M (2002) Is exercise of value in the prevention of fragility fractures in men? Scand J Med Sci Sports 12:197–210PubMedCrossRef 23. Proctor DN, Melton LJ, Khosla S, Crowson CS, O’Connor MK, Riggs BL (2000) Relative influence of physical activity, muscle mass and strength on bone density. Osteoporos Int 11:944–952PubMedCrossRef 24.

0

0 PRT062607 supplier and the remaining sequence was split into an N-terminus and C- terminus [44]. The

proportion of variable sites in each protein domain was calculated between all sequences available for each S. aureus gene, and is denoted as interlineage variation. The proportion of variable sites within protein domains was also calculated within CC lineages for CC5, CC8 and CC30, as these lineages had genome sequence available from multiple isolates (17, 7 and 18 isolates respectively). Within these CC lineages the extent of intralineage variation was calculated for ST5, ST8 and ST30, respectively. The extent of interlineage and intralineage variation in S. aureus proteins involved in adherence and nasal colonisation and/or immune modulation can therefore be compared. Microarray analysis A total of 400 S. aureus isolates were analysed representing MSSA, HA-MRSA, CA MRSA and from human, bovine, equine, pig, goat, sheep and camel. The microarray used in this study was developed and comprehensively described previously [12, 23]. Data from previous studies and additional strains from St George’s Hospital Trust and kindly donated

by Mark Enright are included [12, 14, 40, 45–47]. Sequence analysis of host ligand genes The sequence of the human genes encoding fibrinogen (FG), fibronectin (FN), elastin (ELN), vitronectin (VN), prothrombin (PT) and von Willebrand factor (vWF) were isolated from the GenBank database, accession numbers are shown in Additonal file 3 Tables S3. Variable sites

of each ligand were identified from the GenBank SNP Avapritinib resource MG-132 http://​www.​ncbi.​nlm.​nih.​gov/​SNP and the proportion of variable sites was calculated. The sequence of animal genes encoding fibrinogen (FG), fibronectin (FN-1) prothrombin (PT) and von Willebrand factor (vWF) were identified by BLAST search with human gene sequences and aligned in ClustalW program and then edited by hand if necessary in BioEdit [42, 43]. GenBank accession numbers are shown in Additonal Bcl-w file 5 Tables S5-S9. A similarity matrix of sequences was calculated in BioEdit. Acknowledgements We are grateful to Jason Hinds, Kate Gould, Lucy Brooks, Denise Waldron, Adam Witney and Phil Butcher from the Bacterial Microarray Group at St George’s (BμG@S; http://​www.​bugs.​sgul.​ac.​uk, funded by The Wellcome Trust, for assistance with all microarray studies. We thank Ad Fluit and collaborators for early provision of the whole genome sequence of an ST398 isolate. This study was supported by the PILGRIM FP7 Grant from the EU. Electronic supplementary material Additional file 1: “”Variation in S. aureus surface proteins”". shows the inter- lineage and intra-lineage proportions of variable sites in protein domains for 24 Staphylococcus aureus adhesins. (DOC 290 KB) Additional file 2: “”Variation in S. aureus secreted proteins involved in immune evasion”".

Proteins secreted via the TAT system are often, but not limited t

Proteins secreted via the TAT system are often, but not limited to, proteins that bind cofactors in the cytoplasm prior to transport, such as those involved in respiration and electron transport, and proteins that bind catalytic metal ions [59–62]. The TAT system has also been shown to secrete several factors important for bacterial pathogenesis including iron acquisition, flagella synthesis, toxins, phospholipases, and beta-lactamases

[59, 62–74]. In this study, we identified genes encoding a TAT system in M. catarrhalis SGC-CBP30 in vivo and mutated these genes in order to elucidate the role of this translocase in the secretion of proteins that may be important for pathogenesis. Results and discussion Identification Thiazovivin research buy of tatA,

tatB and tatC genes in M. catarrhalis Analysis of the patented genomic sequence of M. catarrhalis strain ATCC43617 using NCBI’s tblastn service (http://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi) identified an ORF (nucleotides 267,266 to 266,526 of GenBank accession number AX06766.1) that encodes a protein similar to the tatC gene product of Pseudomonas stutzeri[75] (expect value of 7e-56). TatC is the most highly-conserved component of the TAT system among organisms known (or predicted) to utilize this particular secretion apparatus [59–62]. TatC is selleck compound located in the cytoplasmic membrane, typically contains 6 membrane-spanning regions, and plays a key role in recognizing the twin-arginine Methane monooxygenase motif in the signal sequence of molecules secreted by the TAT system. The M. catarrhalis ATCC43617 tatC-like ORF specifies a 27-kDa protein of 247 amino acids,

and analysis using the TMPred server (http://​www.​ch.​embnet.​org/​software/​TMPRED_​form.​html) revealed that it contains 6 potential membrane-spanning domains (data not shown). Sequence analysis upstream of the M. catarrhalis tatC ortholog identified gene products similar to other conserved components of the TAT system, TatA and TatB (Figure 1). The ORF immediately upstream encodes a 178-residue protein with a molecular weight of 20-kDa that resembles TatB of Providencia stuartii [76] (expect value of 3e-8). Upstream of the M. catarrhalis tatB-like gene, we identified an ORF specifying a 9-kDa protein of 77 aa that is most similar to TatA of Xanthomonas oryzae [77] (expect value of 2e-5). TatA and TatB are cytoplasmic proteins anchored to the cytoplasmic membrane via hydrophobic N-termini. TatB forms a complex with TatC often referred to as the twin-arginine motif recognition module, while TatA oligomerizes and forms a channel that is used to secrete TAT substrates [59–62]. Both M. catarrhalis ATCC43617 TatA (aa 4–21) and TatB (aa 5–21) orthologs are predicted to contain hydrophobic membrane-spanning domains in their N-termini using TMPred (data not shown).

The survey design process—including the validation techniques app

The survey design process—including the validation techniques applied—has been published separately selleck compound (Middleton et al. 2014). Study results on the findings from just under

7,000 participants will also be published separately. In this paper we outline and critically reflect upon the extensive and eclectic strategy for recruitment of participants into the study and suggest that https://www.selleckchem.com/products/go-6983.html Social media is a particularly successful tool for participant ascertainment into genetics social sciences research. Overview of recruitment methods in use by others Recent research exploring attitudes towards the sharing of incidental findings from genome studies have used various recruitment techniques. Those that have involved gathering the attitudes of researchers and health professionals have been

done by directly inviting participation using professional email listserves or professional group membership (Ferriere and Van Ness 2012; Townsend et al. 2012; Downing et al. 2013; Fernandez et al. 2013; Klitzman et al. 2013). Members of the public participating in Focus Groups on their attitudes towards sharing incidental findings were recruited using advertisements in local newspapers, flyers and word of mouth (Haga Selleck PF-6463922 et al. 2012; Townsend et al. 2012). Whilst not specifically on incidental findings Facebook has been used successfully in the recruitment of participants into other research about genetics (Reaves and Bianchi 2013), in particular direct to consumer genetic testing (McGuire et al. 2009;

Leighton et al. 2012) and the experience of support gained from social networks for families with children with Trisomy 13 and 18 (Janvier et al. 2012). Twitter has been used successfully as a recruitment method in research that explored the experience of older PAK5 mothers with regards to their pregnancy and birth and their attitudes towards non-invasive pre-natal diagnosis (O’Connor et al. 2013). Facebook adverts have been used as a recruitment tool to identify eligible low-income participants for a study on nutrition (Lohse 2013) and also young adults for a research project on substance use (Ramo and Prochaska 2012). Social media is increasingly being used in other areas of non-genomic social sciences research, and Facebook in particular has been identified as an important tool for recruitment into psychosocial research about genetics (Reaves and Bianchi 2013). Recruitment methods we chose to explore Early on in the study design process we made the decision to collect our quantitative data via an online rather than postal survey (Middleton et al. 2014). This meant that irrespective of the recruitment strategy employed, it would only be accessed via the Internet. 1.

Any intervention that

Any intervention that utilized a pharmacist to improve osteoporosis management was eligible. Manual searches of reference lists from eligible studies and a grey literature search were also completed [7, 8]. Our grey literature search targeted government, Tozasertib chemical structure research institution, professional association, and osteoporosis foundation websites to try to capture research published as a report and not accessible through traditional research

databases, Appendix Table 5. Abstracts, commentaries, letters, news articles, and review papers were excluded. Titles and abstracts were reviewed for relevance by two authors (MNE, AMB), and discrepancies were settled through consultation with a third author (SMC). All relevant publications were identified, yet only RCTs were eligible for detailed review. We therefore Bucladesine identified all papers that included a pharmacist in the context of osteoporosis management, yet focused on RCTs as these may provide

the highest quality of evidence [8]. RCT data abstraction Study characteristics including research design, setting, pharmacist training, patient inclusion criteria, patient recruitment, intervention details, and outcomes were abstracted by two authors (MNE, AMB) and confirmed by a third author (SMC). Since the ultimate goal of identifying high-risk patients is treatment to reduce fracture risk, our a priori focus was on process of care outcomes related to improved identification of at-risk individuals (e.g., BMD testing and physician follow-up) and osteoporosis treatment initiation. We had intended to examine the impact of pharmacist Caspase Inhibitor VI mouse interventions on osteoporosis treatment adherence;

however, no relevant study was identified. After the identification of relevant literature, we decided to summarize information concerning improvements in calcium and vitamin D intake or supplementation. Qualitative assessment of risk of bias We qualitatively examined the threats to internal validity for each trial based on risk for allocation bias, attrition bias, detection bias, and performance bias [8, 9]. Following recent guidelines to improve terminology in non-experimental research [10], we grouped these four potential biases into two types: (1) selection bias, related to allocation and attrition, SPTBN5 and (2) information bias, related to detection and performance. Allocation bias occurs when randomization fails such that comparison groups differ on important prognostic variables. Attrition bias occurs when patients who continue to be followed are systematically different from those who are lost to follow-up in ways that impact outcomes. Detection and performance biases are classified as different types of information bias—biases that occur when there are systematic differences in the completeness or accuracy of data that lead to differential misclassification of patient characteristics, exposure, or outcomes [10].

In our work, the distance between the exposure spots was varied f

In our work, the distance between the Selleckchem H 89 exposure spots was varied from 10 to 30 nm. The elongated structures were arranged on a square grid with 500 nm spacing. The elliptical holes are elongated along after etching (Figure 4b). After overgrowing the holes with a GaAs buffer layer, the effective migration of Ga adatoms to As-terminated facets leads to an elongation of the defined structure in the [0 1 1] direction (Figure 4c). Thus, the initial elongation is compensated by the buffer layer growth and the final hole

becomes find more more symmetric. Hence, the aspect ratio (major axis /minor axis) after buffer layer growth decreases with increasing separation of the two exposure spots. Using this approach, it was possible to reduce the aspect ratio of the final hole from, e.g., 1.26±0.05 to 1.13±0.05 for the 20 s sample. Reducing the aspect ratio is promising due to the alignment of the QDs inside the hole as they align along Selleck Tofacitinib a chain (Figure 4d) in the direction of the hole elongation, i.e., [0 1 1] [37, 39]. Figure 4 Manipulation of

the aspect ratio by appropiate exposure design. Comparison of the aspect ratio before and after the buffer layer growth. Two dots with a certain distance are exposed to the resist (a) in order to define an elongated structure, see (b). The attachment of GaAs depends strongly on the crystallographic direction leading to an elongated structure perpendicular to the previous one, see (c). This elongation leads to a nucleation of QDs along a chain, see (d), and is therefore undesired. With increasing Glutamate dehydrogenase distance of the two exposure spots,

it is shown in (e) to increase the aspect ratio before the buffer layer growth and therefore decrease the aspect ratio after the buffer layer growth due to the different migration rates. The result of writing ellipses instead of round holes into the resist is shown in Figure 4e. The aspect ratio of the major elliptical axes is given with respect to the separation of the two exposure spots before buffer layer growth (black) and after buffer layer growth (red). As intended and shown in Figure 4, the aspect ratio increases (decreases) with increasing distance of the two exposure spots before the buffer layer growth (after the buffer layer growth). Next, the influence of the aspect ratio on the QD nucleation was investigated. Two samples, dry etched for 10 and 15 s, are compared. With increasing distance between the two exposure spots, the final aspect ratio decreases, while the hole size increases. This effect can be seen for both samples. The differences in hole size between the two samples emerge as mentioned above. Longer-etched holes become larger due to a pullback of the resist near the holes by sputtering from the etching gases (compare Figure 1 where the resist is affected near the holes). Furthermore, the aspect ratios of longer-etched holes are smaller. This might be explained by insufficient optimization of the etching gas parameters.

The V th is defined as the gate voltage at I d = 10−9 A The temp

The V th is defined as the gate voltage at I d = 10−9 A. The temperature coefficients of V th are −1.34 and −5.01 mV/°C for GAA and planar XAV-939 clinical trial JL TFTs, respectively. According to [13], the variation of in n-type JL devices can be expressed as follows [13]: (4) Figure 4 Impact of temperature dependence on the (a) V th and (b) on-state currents. For JL GAA TFTs (L g = 1 μm, 60 nm) and JL planar TFTs (L g = 1 μm). The Vth and Ion for JL GAA TFTs are less sensitive to temperature than JL planar TFTs. where V fb is the flat-band voltage, C ox is the gate oxide capacitance per unit length, A is the device cross-sectional area and P is the gate perimeter. The first term in the right side of Equation

4 is depended on the flat-band voltage variation with temperature. For N D = 1 × 1019 cm−3, the value of is approach to −0.49 mV/°C as the devices in [13], which has a P+ polycrystalline silicon gate and the same doping concentration. The second term

represents the Selleckchem Volasertib effect of incomplete ionization. The doped impurities are almost completely ionized at those temperatures higher than room temperature. Thus, the doping concentration variation with the temperature has a slight dependence on temperature. The third term, depending on the electron effective mass, also has a smaller dependence on T than the other terms. The theoretical value of is about −0.49 mV/°C; although the of −1.34 mV/°C in JL GAA TFTs is larger than theoretical value, but is comparable with current SOI-based JNT ( approximately −1.63 mV/°C) [7] due to the use of the multi-gate structure and formation of

a crystal-like nanosheet GSK621 price channel with fewer traps by oxidation process. Therefore, JL TFTs with the GAA structure and ultra-thin channel shows an excellent immunity to the temperature dependence on V th and competes with SOI-based JNT. Figure 4b presents the measured on-current (I on) as a function of temperature. The I on is defined as the drain current at V g = 3 V for JL planar TFTs and at V g = 6 V for JL GAA TFTs. The JL GAA TFTs show a slightly better I on variation with Depsipeptide temperature than the planar ones, possibly owing to a smaller in JL GAA TFTs. Conclusion This work has presented a high-temperature operation of JL TFTs. The high temperature dependence of JL GAA and planar TFTs is also studied. The variation of parameters such as V th, I on, SS, and I off are analyzed as well. The variation of the SS with temperature for JL GAA TFTs is close to the ideal value (0.2 mV/dec/K) owing to the ability of the oxidation process to form a nanosheet channel and crystal-like channel. Additionally, I off is negligibly small for JL GAA TFTs, owing to quantum confinement effect; its E g of 1.35 eV is also extracted. The JL GAA TFTs have a smaller than that of JL planar TFTs owing to the GAA structure and ultra-thin channel.

2003), the use of synchronized versus non-synchronized cultures (

2003), the use of synchronized versus non-synchronized cultures (Kosourov et al. 2002), certain amounts of sulphate in the medium (Zhang et al. 2002; Kosourov et al. 2002), as well as temperature

and the growth YM155 phase of the pre-culture (the authors’ own unpublished results) have significant effects on the time it takes for the algal culture to start producing H2 and on the amounts of H2 that are accumulated. Light intensity has a particular impact on the development of S-depleted C. reinhardtii cultures (Laurinavichene et al. 2004) similar to that the culture density has (Kosourov et al. 2002), since the latter determines the amount of light that can penetrate the cell suspension. Furthermore, Saracatinib clinical trial the availability of carbon (C) sources strongly influences the H2 metabolism of S-deprived C. reinhardtii cultures. Standard TAP medium contains acetate, which can be used by this species as a C source both for growth and respiration. Chlamydomonas can be grown in TAP without supplemental CO2, whereas some researchers use TAP as growth medium

but furthermore provide extra CO2 (up to 5%), and in some laboratories, C. reinhardtii is grown photoautotrophically in HSM medium or other minimal media (Harris 1989, 2009). For H2 production upon S deprivation, acetate is essential for the establishment of anaerobic conditions (Fouchard et al. 2005), unless PSII find more activity is rapidly diminished by applying light stress to the cells grown in dimmed light (Tsygankov et al. 2006; Kosourov et al. 2007). On the other hand, the attempts of several researchers to rapidly induce H2 production in illuminated algae by applying the PSII inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) did not result in any H2 accumulation because of the dependence on electrons provided by organic reserves which were

built up using electrons provided by PSII (Fouchard et al. 2005; Hemschemeier et al. 2008). Not in the least, the activity of the Calvin Benson cycle plays a significant role in H2 production by C. reinhardtii, since it acts as a competing electron sink. For instance, it has been shown that a Ribulosebisphosphate carboxylase/oxygenase (Rubisco)-deficient strain produces H2 in full TAP medium (Hemschemeier below et al. 2008). On the other hand, C. reinhardtii transformants having a reduced ratio of photosynthetic O2 evolution and respiratory O2 uptake establish anaerobiosis and develop in vitro hydrogenase activity in full medium upon illumination, but they do not produce significant amounts of H2 unless the Calvin Benson cycle is inhibited (Rühle et al. 2008). As a consequence of all these affecting parameters, we recommend the following to stably establish photohydrogen production in S-deprived C. reinhardtii cells: The pre-culture should have a chlorophyll content of 20–25 μg ml−1. Too thin cultures will not establish anaerobic conditions; too dense cultures will have a less efficient photosynthetic activity.

Although there was an increase in the expression

of p-Akt

Although there was an increase in the expression

of p-Akt protein in cells treated with bostrycin for 12 hours, when compared with cells at the 0 hour time #C188-9 ic50 randurls[1|1|,|CHEM1|]# point, we showed a gradual decrease in p-Akt levels over time, with the most obvious reduction at 48 hours. We also showed a time-dependent increase in the levels of p27 protein in bostrycin-treated cells (Figure 4). Figure 4 Effects of Bostrycin on intracellular expression of p110α, p-Akt and p27 in A549 cells. A549 cells were treated with 10 mol/L bostrycin for 12, 24, 48, or 72 hours. Cells were harvested, total proteins were extracted and immunoblotted for p110α, p-Akt and p27. Untreated A549 cells were used as a control. Beta-actin was used as loading control. Discussion In this study, we demonstrated that bostrycin, a novel compound isolated from marine fungi in the South China Sea, inhibited cell proliferation, blocked cell cycle progression, and promoted apoptosis of lung cancer A549 cells. Our data also suggested that the PI3K/AKT signaling pathway may play a role in bostrycin-mediated

inhibition of cell proliferation. Although bostrycin was previously shown to effectively inhibit cell growth and promote apoptosis in prostate cancer and gastric cancer [3, 4], it has not been used in lung cancer cells. To our knowledge, ours is the first study demonstrating that bostrycin significantly inhibited the growth of A549 cells in a concentration- and time-dependent Carnitine palmitoyltransferase II manner. Regulation of the cell cycle and apoptosis is KU55933 a major determinant dictating the development and progression of a number of cancers. PI3K/AKT inhibitors such as Tipifarnib, cause cell cycle arrest at the G1 or G2/M phase and induce apoptosis of human lung cancer

cells [5, 6] Our data were consistent with this study and showed that bostrycin treatment induced downregulation of PI3K/AKT signal pathway proteins, caused G0/G1 cell cycle arrest and promoted apoptosis in A549 cells. PI3K is composed of a p110αsubunit and p85 subunit and the PI3K/AKT signaling pathway has been shown to play a role in the development and progression of lung cancer [7]. Increased Akt activity has been reported in the bronchial endothelial cells of long-term smokers [8, 9] and persistently high levels of activated Akt was shown in bronchial endothelial cells from malignant tumors or precancerous lesions. Akt activation is thought to be related to poor prognosis of patients with lung cancer [10–12] and may be an important molecular target for treatment of lung cancer. The PI3K/AKT signaling pathway inhibits apoptosis by inactivating important members of the apoptotic cascade, including caspase-9, forkhead, and proapoptotic Bad [13–15] and by upregulating the transcription and translation of antiapoptotic genes via NFκB [16] and cell cycle genes like cyclin D1 and p27 [17].

aeruginosa is capable of performing denitrification at relatively

aeruginosa is capable of performing denitrification at relatively high dissolved oxygen levels [28–30]. The physiological role for aerobic denitrification has not yet been fully elucidated. From a purely energetic standpoint, the advantage of co-respiration using both oxygen and nitrate is not obvious, since energetically denitrification buy CBL0137 is less efficient than aerobic respiratory pathways. However, this apparent paradox has been addressed in different bacteria and additional physiological roles have been suggested for various denitrification enzymes [31]. Our own analysis of global gene expression in P. aeruginosa in this study points to role of aerobic denitrification as a response to media acidification

assuming that aerobic denitrification might be essential for P. aeruginosa to maintain an optimum pH during infection of the gut. Similarly, the role of arginine

deiminase system is far more complex than merely to support cellular survival under anaerobiosis. In fact, the major function of this system in a variety of lactic acid bacteria and Streptococcal species has been shown to protect organisms against acid damage [24, 32]. For P. aeruginosa this role has not been previously demonstrated and therefore is novel. Cilengitide chemical structure Finally we observed attenuated expression of multiple stress-related and resistance-related genes at pH 7.5. Taken Pevonedistat in vitro together these findings suggest that pH 7.5 is more physiologic for P. aeruginosa and that P. aeruginosa may regulate its environmental pH to facilitate its colonization and/or Nabilone invasion. Table 2 P. aeruginosa genes with decreased expression at pH 7.5 vs pH 6.0 PA ID Gene name Fold expression pH7.5 vs pH6.0 Function    Subsystem

PA5170 arcD -1.91 Arginine/ornithine antiporter ArcD    Arginine deiminase pathway PA5171 arcA -4.3 Arginine deiminase (EC 3.5.3.6)    Arginine deiminase pathway PA5172 arcB -2.82 Ornithine carbamoyltransferase (EC 2.1.3.3)    Arginine deiminase pathway PA5173 arcC -2.13 Carbamate kinase (EC 2.7.2.2)    Arginine deiminase pathway PA0530   -2.49 Acetylornithine aminotransferase (EC 2.6.1.11)    Arginine_Biosynthesis_extended PA3865   -2.74 Arginine/ornithine ABC transporter, periplasmic arginine/ornithine binding protein    Arginine deiminase pathway PA1540   -2.14 Spermidine export protein mdtI    Small_Multidrug_Resistance PA1541   -3.44 Spermidine export protein mdtJ    Small_Multidrug_Resistance PA0509 nirN -3.39 Nitrite reductase associated c-type cytochorome NirN    Dissimilatory_nitrite_reductase PA0510   -4.39 Uroporphyrinogen-III methyltransferase (EC 2.1.1.107)    Dissimilatory_nitrite_reductase PA0511 nirJ -5.67 Heme d1 biosynthesis protein NirJ    Dissimilatory_nitrite_reductase PA0512   -1.84 Heme d1 biosynthesis protein NirH    Dissimilatory_nitrite_reductase PA0513   -1.76 Heme d1 biosynthesis protein NirG    Dissimilatory_nitrite_reductase PA0514 nirL -2.32 Heme d1 biosynthesis protein NirL    Dissimilatory_nitrite_reductase PA0515   -7.