Each primer was obtained from SA Bioscience The promoter sequenc

Each primer was obtained from SA Bioscience. The promoter sequence of guanosine monophosphate reductase was PCI 32765 used as a control. PCR products were subjected to gel electrophoresis to check the amplicon size (Supporting

Information Fig. 2B). Statistical analysis was performed using the Student’s t-test. A p-value of <0.05 was considered to indicate a significant difference. We thank Dr. Kathryn L. Calame for kindly providing us with pGL-3-(-1500 Blimp-1) LUC reporter plasmids. We also thank the following people for their technological expertise and support: Ms. K. Sakashita, Ms. K. Watada, and Mr. M. Anraku. This work was supported by grants from the Japan Society for the Promotion of

Science, Ministry of Health, Labor and Welfare, and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (in part by Global COE Program Chemical Biology of the Diseases, by MEXT), Japan. The authors declare no financial or commercial conflict of interest. As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should

be addressed to Epothilone B (EPO906, Patupilone) the authors. Figure 1. The full Buparlisib research buy gating strategy used in our experiments. Cells were gated based on side scatter and forward scatter to exclude debris. Cells were then gated for CD4 and CD4+ cells and were divided using Egr-2 and LAG-3 expressions. To assessing proliferation, we labeled cells with CFSE at the start of the culture and the relationship between Egr-2 expression and the CFSE dilution level was examined in CD4+ cells. Figure 2. (A) TheChIP assay result shown in Figure 2B was re-calculated. The result was presented as % input. (B) A gel picture of quantitative real-time PCR products. PCR products from Input DNA and immunoprecipitated DNA with anti-Egr-2 IgG or anti-control IgG amplified with the designed primers detecting Blimp-1 promoter sequences (# GPM1042845(-)01A; SA Biosciences) were subjected to gel electrophoresis. The amplicon size was 112 bp. “
“Several recent studies have implicated myeloid cells in providing a microenvironment that promotes tumor cell survival and metastasis, therefore preparing a “premetastatic niche” for cancer progression. In this issue of the European Journal of Immunology, Zhang et al. [Eur. J. Immunol. 2015. 45. XXXX-XXXX] address the regulation of immune cells in premetastatic lymph nodes in experimental mouse models.

We, therefore, performed a time kinetics study for MAPK activatio

We, therefore, performed a time kinetics study for MAPK activation after bacterial challenge of monocytes in the presence or absence of n-butyrate. Phosphorylation of extracellular signal-regulated kinase 1/2 and p38 could be demonstrated after 30 min stimulation with LPS whereas Jun N-terminal kinase was not affected. Addition of n-butyrate to LPS did not

lead to a further up-regulation of any MAPK activation pathways (Fig. 6a, same results after 5 and 15 min). Addition of the specific MAPK/ERK kinase (MEK)1/2 inhibitor UO126 as well as p38 inhibitors SB203580 and SK86002 blocked phosphorylation of the respective MAPK after stimulation with LPS and after stimulation with LPS plus n-butyrate (data not shown). Similar results LY2109761 research buy were obtained, when MAPK activation was assessed by intracellular staining and Western blotting (data not shown). Since COX-2 expression also largely depends on NF-κB signalling[19-21] we elucidated the impact of n-butyrate on several components of this pathway high throughput screening after LPS activation. We, therefore performed Western blot analyses for NF-κB activation after

bacterial challenge of monocytes in the presence or absence of n-butyrate. Results of these experiments clearly showed that phosphorylation and degradation of IκB, as well as phosphorylation of p50 and p65, after stimulation with different concentrations of LPS was unaffected by n-butyrate (Fig. 6b). We next assessed DNA binding activity of NF-κB p50 and NF-κB p65 after stimulation with LPS in the presence or absence of n-butyrate and

found that n-butyrate treatment had an inhibitory effect on DNA binding in monocytes (Fig. 6c). Interestingly, phosphorylation of p105, a marker for alternative NF-κB pathway activation, was also unaffected by n-butyrate (Fig. 6b). These findings indicate that buy Gefitinib n-butyrate appears to differently interfere with early and late phases of NF-κB signalling and might even have the converse effect on different NF-κB signalling pathways. Many recent studies highlight the immunomodulatory potential of the SCFA n-butyrate in various immune cell populations like monocytes, dendritic cells, T cells and mast cells as well as epithelial cells.[5, 8-10, 12, 13, 22-25] As its presence is largely restricted to the gastrointestinal tract and immunological features of this region have striking similarities to the effects brought about by this physiologically occurring substance there is great interest in its molecular mode of action, which, so far has been poorly understood. In this study, we show that the bacterial metabolite n-butyrate substantially influences the monocytic gene regulation of several members of the eicosanoid pathway and potentiates the release of prominent prostaglandins and leukotrienes.

AML cells at presentation of disease show a number of abnormaliti

AML cells at presentation of disease show a number of abnormalities suggestive of immune pressure to select variants that evade immune surveillance. INK 128 concentration AML can express the ligand for the glucocorticoid-induced tumour necrosis factor-related protein (GITRL), which can block NK function through triggering GITR on the NK cell directly or through soluble GITRL [32]. AML blasts often weakly express co-stimulatory molecules which may favour their escape from T cell-mediated

killing, and the probability of remaining in remission is greatest in patients who express both CD80 and CD86 [4]. AML cells can shed ligands for co-stimulatory molecules such as the 4-1BB ligand, which may allow the leukaemia to block T cell attack by the binding of soluble ligand to the T cell [33]. The class II-associated invariant chain

self-peptide (CLIP) is expressed variably in AML. CLIP down-regulation can increase antigenicity of AML cells (by unblocking MHC class II loading with self-antigen) and increase CD4 responses. Patients whose AML blasts have less CLIP bound to HLA-DR molecules have prolonged remissions [34]. AML cells secrete soluble factors which may be responsible for a variety of defects observed in T cell and NK cell function [35,36]. Through their myeloid-lineage affinity, AML cells can generate leukaemic dendritic cells (DC) in vitro and in vivo which function as antigen-presenting Rebamipide cells (APC). However, AML DC are distinctly abnormal [37]. PCI-32765 supplier They can inhibit the induction of CTL, inducing T cell anergy [38–40] and favouring the generation of regulatory T cells [41] which are increased

in AML [42]. Probably as a consequence of the leukaemia, T cells in AML show several abnormalities: recent thymic emigrants are reduced, suggesting defective thymic function [43]. In a detailed study of T cells in AML Le Dieu and colleagues found T cells with abnormal phenotypes and genotypes that formed defective immune synapses with AML blasts [44]. Finally, the AML microenvironment may favour AML survival – mesenchymal stromal cells in leukaemias can provide an immunosuppressive milieu [45] and the protective endosteal region of the marrow favours the survival of leukaemic stem cells [46]. Whether the goal of immunotherapy in AML is to boost the patient’s immune system or to confer immunity with T cells, NK cells or monoclonal antibodies, immune treatment is usually planned as a means of sustaining remission once the disease has been bulk-reduced with chemotherapy. Animal models of AML have proved useful in providing the basis for adoptive T cell and NK cell therapy [47], exploring the combination of immunotherapy with chemotherapy [48] and defining the role of regulatory T cells in preventing full efficacy of leukaemia-specific cytotoxic T cells in a mouse AML model [49].

Human CCR6+ Th17 cells are present in both TCM and TEM compartmen

Human CCR6+ Th17 cells are present in both TCM and TEM compartments, indicating that they are able to migrate to lymphoid organs and peripheral nonlymphoid tissues. Furthermore, a small subset of CCR6+ T cells expresses the skin-homing receptor CCR10 [22]. Most of these CCR6+CCR10+ cells, however,

do not produce IL-17 nor express RORγt, but produce high levels of IL-22, a Th17-related cytokine, and express the aryl hydrocarbon receptor [22, 23]. selleck chemical IL-22-producing T cells, which are operationally defined as Th22 cells, have to be considered a subtype of Th17 cells, at least until data that better define their differentiation program become available. Whatever their origin might be, it is likely that Th22 cells play a role in skin homeostasis and inflammation, in view of their homing properties and their production of IL-22, a cytokine that selectively affects keratinocyte functions, as well as their antigenic specificity [24-26]. The selective expression

of CCR6 on human Th17 cells and the role of mouse Th17 cells in the induction of experimental auto-immune encephalomyelitis (EAE) [3] prompted an investigation of the role of the CCR6/CCL20 axis in the migration of encephalitogenic T cells to the CNS. It was found that, as observed in humans, CCR6 identified mouse Th17 cells and, most notably, that the CCR6 ligand CCL20 was constitutively expressed at high levels by epithelial cells LY2835219 research buy of the choroid plexus [27], a glomerular structure that is responsible for the formation of cerebrospinal fluid. Adoptive transfer experiments Glutathione peroxidase using reconstituted CCR6-deficient mice demonstrated that CCR6+ Th17 cells were the first to migrate through the choroid plexus into a noninflamed CNS where they opened up the blood brain barrier, leading to the local CCR6-independent recruitment

of a second wave of effector cells that boosted and sustained inflammation. A role for CCR6 in CNS inflammation is also supported by the finding that in multiple sclerosis (MS) patients autoreactive T cells are found exclusively in the CCR6+ compartment [28]. Since CCR6 is expressed also on a subset of human Th1 cells as well as in B cells and Treg cells, it is also possible that these subsets may migrate into the CNS through the choroid plexus and regulate inflammation. Initial studies to define the requirements for human Th17-cell differentiation were performed using naïve T cells isolated from adult peripheral blood or cord blood stimulated with anti-CD3 antibodies in the presence of exogenous recombinant cytokines.

Mouse embryonic fibroblasts (MEFs) with or without β-arrestin

Mouse embryonic fibroblasts (MEFs) with or without β-arrestin

2 were generous gifts from Dr Robert Lefkowitz, Duke University Medical Center. The human embryonic kidney 293 (HEK293) cells stably transfected with hTLR4 (HEK293/TLR4) or hTLR2 (HEK293/TLR2) were kindly provided by Dr Evelyn A. Kurt-Jones of the University of Massachusetts Medical School. β-Arrestin 2 full-length vector, short hairpin RNA (shRNA) vector and https://www.selleckchem.com/products/chir-99021-ct99021-hcl.html corresponding cloning vectors were generous gifts from Dr Gang Pei, Shanghai Institutes for Biological Sciences, China. The plasmids pcDNA3-GSK3β (S9A) and pcDNA3-GSK3β (K85A) were kindly provided by Dr Michael Martin (University of Louisville School of Dentistry, Louisville, KY). HEK293 and HEK293/TLR4 cells (3 × 105/dish) were seeded on 35-mm dishes 24 hr before transfection. Transfection was performed with 1 μg vector using LipofectAMINE 2000 reagent (Invitrogen Corporation, Carlsland, CA) according to the manufacturer’s instructions.

Forty-eight hours later, the full medium was replaced with the basal medium for later SD experiments.10,11 Apoptotic cells were determined by terminal deoxynucleotidyl transferase biotin dUTP nick end labelling (TUNEL) assay using an in situ cell death detection kit (Roche Diagnostic, Indianpolis, IN) as described in our previous publications.25,26 The 3′-OH ends of fragmented nucleosomal DNA were specifically labelled in situ in the presence of Erlotinib in vivo exogenously added terminal transferase biotin-labelled dUTP, Opaganib nmr and were detected with alkaline-peroxidase-conjugated anti-fluorescein antibody. Cells were fixed on coverslips with ice cold 4% paraformaldehyde for 30 min and exposed for the appropriate time to a permeabilization solution (0·1% Triton X-100, 0·1% sodium citrate). Coverslips were coated with poly-d-lysine. After washing, 50 μl of TUNEL reaction mixture was placed on the cells and then incubated in a humidified atmosphere for 60 min at 37°. Fifty microlitres of substrate solution was added onto coverslips following convert-AP incubation. Finally

coverslips were washed with phosphate-buffered saline and mounted with citiflor. Apoptosis was quantified by scoring the percentage of cells with positive staining at the single cell level. Apoptotic versus total cells were counted in at least five randomly chosen microscopic fields (magnification 20 ×) and 1000 total cells. Western blot was performed as described previously.27 Briefly, protein was extracted by Lysis buffer containing 1% nonidet P-40, 50 mm HEPES, 150 mm NaCl, 1 mm ethylenediaminetetraacetic acid, 1 mm phenylmethylsulphonyl fluoride, 0·1% sodium dodecyl sulphate (SDS), 0·1% deoxycholate and 500 μm orthovanadate. Bradford method was used to determine protein concentration.

Change in formulation to a higher IgG concentration represents a

Change in formulation to a higher IgG concentration represents a straightforward means to offer patients with PI a more convenient subcutaneous infusion option. A prospective, open-label, multi-centre, single-arm, Phase III study was conducted to evaluate the efficacy and safety of a 20% liquid SCIG stabilized with l-proline in patients with PI over 15 months, and the results underscore positive aspects of SCIG therapy [2]. A mean serum Doramapimod cost IgG of 12·5 g/l was achieved using weekly doses that added up to approximately 153% of the monthly IVIG dosage given before study entry. There was a total of 96 non-serious infections, corresponding to a rate of 2·76 infections/patient/year,

and no serious bacterial infections (SBI) were LY2157299 purchase observed. In addition to the overall infection

rate, the rate of missed work/school days (2·06 days/patient/year) was also low over the duration of the study relative to that described in a study with 16% SCIG [3]. No serious adverse events (AEs) related to study medication were reported. The formulation allows storage at 25°C, which may improve convenience for patients. In a study of healthy volunteers, 20% SCIG and 16% SCIG (Vivaglobin®, CSL Behring GmbH, Marburg, Germany) were evaluated for comparative local tolerance. At the same IgG dose, lower scores for both mean and maximal local pain at Montelukast Sodium the injection site were observed for the 20% SCIG formulation (P = 0·0205 and P = 0·0801, respectively; Fig. 2). Optimization of IgG formulation can lead potentially to practical improvements for patients in reducing the infusion volume and, consequently, shortening the infusion time. IgG therapy may be optimized by knowledge of the serum IgG levels required to minimize infection risk. A meta-analysis of 17 studies (mean of 34 patients per study) evaluating serum IgG levels and pneumonia incidence in patients with PI receiving IVIG was the first of its kind across PI studies [4]. The study revealed that average serum IgG levels

increased by 1·21 g/l for every 100 mg/kg IVIG dose increase. Pneumonia incidence declined by 27% with each 1·00 g/l increment in serum IgG levels (for data up to 10 g/l IVIG) (Fig. 3) [4]. Pneumonia incidence with maintenance of 5 g/l serum IgG levels was fivefold higher than that with 10 g/l. Sufficient data were not available within the studies to allow predictions for IgG levels > 10 g/l. The analysis also identified that across studies there was a lack of standardization in diagnosing infections and reporting of end-points relevant to the therapy. The results of a recent prospective study of patients with PI followed over 22 years showed that a broad range of serum IgG levels was required to bring patients into an infection-free state [5].

Instead, CD4+CD25high Treg cells slightly proliferated in the

Instead, CD4+CD25high Treg cells slightly proliferated in the

presence of OK-432 (Fig. 2B). These data suggest a critical role for IL-12 in the inhibition of Treg-cell suppression by OK-432. To gain insight into the cellular target(s) of OK-432, we explored the origin of IL-12 after OK-432 treatment based on the essential role of IL-12 in the inhibition of Treg-cell suppression by OK-432. We then analyzed whether OK-432 stimulation indeed induced IL-12 production from APCs, such as CD3-depleted PBMCs used in the standard Treg-cell suppression assays. CD3-depleted PBMCs from healthy donors were stimulated with OK-432, LPS, or TNF-α, and cytokine production was examined. OK-432 induced significantly higher amounts of IL-12 from CD3-depleted PBMCs than LPS or TNF-α (Fig. 3A). In addition, CD3-depleted PBMCs stimulated with OK-432 induced much Selleckchem Temozolomide less IL-10 production than LPS (Fig. 3A). Similar results, i.e. IL-12 rather than IL-10 was dominantly produced by CD3-depleted PBMCs stimulated with OK-432, were obtained from four esophageal cancer patients (Fig. 3B). We next examined which cell types in PBMCs produced Erlotinib IL-12 after OK-432 stimulation. The major sources of IL-12 in PBMCs after OK-432 stimulation were CD11c+ and CD14+ cells, and neither NK cells nor T cells produced IL-12 (Fig. 3C). Taken together, APCs, such as monocytes,

macrophages, and DCs are considered to be the cellular targets of OK-432 to induce IL-12 which is a crucial component for the inhibition of Treg-cell suppression by OK-432. As OK-432 is available as an anticancer agent in Japan and has been used for controlling tumor-associated exudate fluids by direct injection to the cavity, we next investigated its influence on Treg cells following in vivo treatment of OK-432. We analyzed the local Treg-cell accumulation and function of tumor-associated sites before and 2–3 days after local OK-432 administration. Cells were isolated from tumor-associated exudate fluids, such as

pleural effusions and ascites. The frequency of Treg cells before and after treatment with OK-432 was examined by staining with Abs for CD4, CD25, and Foxp3. The Foxp3+ T-cell population in CD4+ T cells was markedly reduced (Fig. 4A). Furthermore, the proportion of Foxp3+ T cells in CD4+CD25+ T cells was also significantly reduced after OK-432 administration (Fig. 4A and B), indicating Chorioepithelioma that the balance of helper T cells to Treg cells had changed. We next addressed the suppressive activity of CD4+CD25high T cells in tumor-associated exudate fluids. CD4+CD25high T cells (highest 3% gate of CD4+CD25+ cells defined with peripheral blood was applied) were isolated from tumor-associated exudate fluids and cultured with CD4+CD25− T cells from PBMCs with irradiated autologous APCs and anti-CD3 Ab. After OK-432 administration, as the volume of tumor-associated exudate fluids decreased, sufficient amounts of CD4+CD25high T cells for proliferation assays were available only from two patients.

Grey level co-occurrence matrix (GLCM) method is one of the compu

Grey level co-occurrence matrix (GLCM) method is one of the computational

image analysis methods commonly used today for quantification of cell and tissue structure. In our previous studies, we have indicated that this technique can successfully measure the level of cytoarchitectonics disorder within a lymphoid check details tissue,[24] as well as structural changes in chromatin architecture in individual lymphocytes.[16] Other authors have recently applied the GLCM method in cell biology for evaluation of chromatin structure during programmed cell death (apoptosis),[25] as well as for textural analysis in radiology.[31, 32] The GLCM method has been introduced by Haralick et al. (1973) who established a set of textural features based on distribution of grey levels within pairs of image

resolution units. Some GLCM parameters might be sensitive in detection of fine chromatin structural changes during apoptosis (programmed cell death) when compared with conventional molecular biology/histology techniques such as Annexin-V labelling, TdT-mediated dUTP nick end labelling assay, FACScan Sub G0/G1 peak etc.[16, 25] The lack of difference between the age groups in GLCM parameters may imply that GLCM detectable factors that affect nuclear chromatin, such as those present during apoptosis, are not present or have minimal impact during postnatal development of macula densa. However, further research is needed to confirm this assumption. In general, there are two classes of factors that contribute to tissue aging: extrinsic and intrinsic factors.[33] Extrinsic factors are TGF-beta inhibitor over related to age-related changes in the tissue microenvironment, which include changes in intercellular communication or variations in biochemical mediator (i.e. interleukins) levels. Extrinsic factors tend to impair cytoarchitectural organization and may affect fractal/textural parameters of the tissue in general. On the other hand, intrinsic factors are limited to the individual cells,

or, more precisely, to their genome. In many cell populations, an important intrinsic factor that leads to cellular aging is DNA damage accumulation. In the kidney, DNA damage may occur as the result of the destructive effect of various nephrotoxic substances that come in contact with tubular system cells during life. Also, as in other cells in human organism, DNA damage may occur as the result of imperfections of DNA replication and repair mechanisms. Other important intrinsic factors that may influence cell aging are epigenetic chromatin alterations that take place on a larger scale than DNA damage accumulation.[33, 34] These epigenetic factors are closely related to changes in transcriptional activity of certain chromosomal regions (either up- or downregulating gene expression).

Figure S1 Flow cytometric gates for the evaluation and collectio

Figure S1. Flow cytometric gates for the evaluation and collection of B lineage cells from the bone marrow of 8-week C57BL/6 mice. Table S1. CDR-H3 sequences obtained from wild-type C57BL/6 bone marrow B lineage cells Table S2. CDR-H3 sequences obtained from C57BL/6 IgHa.ΔD-iD congenic bone marrow mature, recirculating

B cells. “
“There is emerging interest in the application of mesenchymal stem cells (MSC) for the prevention and treatment of autoimmune diseases, graft-versus-host disease and allograft rejection. It is, however, unknown how inflammatory conditions affect phenotype and function of MSC. Adipose tissue-derived mesenchymal selleck monoclonal humanized antibody stem cells (ASC) were cultured with alloactivated peripheral blood mononuclear cells (PBMC) (mixed lymphocyte reaction: MLR), with proinflammatory cytokines [interferon (IFN)-γ, tumour necrosis factor (TNF)-α and interleukin (IL)-6] or under control conditions,

and their full genome expression and function examined. Proinflammatory cytokines mainly increased indoleamine-2,3-dioxygenase expression, whereas ASC cultured with MLR showed increased expression of COX-2, involved in prostaglandin E2 production. Both conditions had a stimulatory, but differential, Selleck Maraviroc effect on the expression of proinflammatory cytokines and chemokines, while the expression of fibrotic factors was decreased only in response to proinflammatory cytokines. Functional analysis demonstrated that inflammatory conditions affected morphology and proliferation of ASC, while their differentiation capacity and production of trophic factors was unaffected. The immunosuppressive capacity

of ASC was enhanced strongly under inflammatory conditions. In conclusion, ASC showed enhanced immunosuppressive capacity under inflammatory conditions, while their differentiation capacity was preserved. Therefore, buy Fludarabine in vitro preconditioning provides ASC with improved properties for immediate clinical immune therapy. Mesenchymal stem cells (MSC) are found in a variety of tissues, including bone marrow, skin and adipose tissue [1–3] and can be expanded easily in vitro. MSC are thought to have tissue regenerative properties, in the first place via their multi-lineage differentiation capacity [2] and, perhaps more importantly, via the secretion of trophic factors that may activate local progenitor cells [4]. In addition, MSC have potent immunomodulatory capacity. They inhibit the proliferation of T cells [5,6] and inhibit dendritic cell maturation [7,8]. These properties make MSC promising for a diversity of clinical applications; for example, for the prevention and treatment of autoimmune diseases and bone marrow rejection. Recently, interest has developed in the use of MSC in solid organ transplantation [9,10]. These conditions are associated with an inflammatory milieu.

Our results indicated that

motoneurons were protected by

Our results indicated that

motoneurons were protected by VPA against cell death induced by brachial plexus root avulsion through c-Jun inhibition and Bcl-2 induction. © 2013 Wiley Periodicals, Inc. Microsurgery 33:551–559, 2013. “
“The free jejunum has become an important method for reconstructing extensive oncologic defects of the upper esophagus and pharynx. The advantages of a single-staged reconstruction with a low incidence of morbidity have generally outweighed criticisms such as the requirement for a laparotomy and poor voice quality. The aim of the study was to present the technique and outcomes of free jejunal reconstruction of the upper esophagus in Erlotinib concentration 31 consecutive cases. We reviewed our experience of free jejunal flaps undertaken over a 6-year period. Our surgical approach, complications, and results of swallow and speech restoration are described. A functional swallow was achieved by 27/31 patients. However, satisfactory voice restoration was seen in only a small proportion of patients. Complications at the donor site occurred in just one patient. The current review confirms the jejunal flap as a reliable reconstructive option with minimal donor site

morbidity. © 2012 Wiley Periodicals, Inc. Microsurgery, 2013. “
“The role of vascularized bone marrow in promoting composite allograft survival can be assessed by intrinsically chimeric flaps. In this study, we introduce a significant modification to a previously described rat model of buy Navitoclax combined superficial inferior epigastric next artery (SIEA) myocutaneous/vascularized femur transplantation. We previously noted autocannibalization in orthotopic myocutaneous SIEA allotransplants, which complicated clinical and histologic evaluation of rejection. We therefore designed syngeneic experiments in eight Lewis (RTl1) rat pairs to explore the feasibility of tunneling the SIEA component of chimeric SIEA myocutaneous/vascularized femur flaps to the recipient dorsum. Vascularized SIEA myocutaneous/femur transplants survived in their entirety to POD 63 study endpoint with patent anastomoses

in seven of eight (87.5%) transplants as confirmed clinically, histologically, and via near-infrared fluorescent angiography. Tunneling of the SIEA component of SIEA myocutaneous/vascularized femur flaps to the recipient dorsum can be achieved with high success rate and acceptable operative times, and is a technically easy method to study the role of vascularized bone marrow in composite allografts. This modification facilitates SIEA component monitoring, removes it from constant contact with cage bedding, and places it in a location where autocannibalization is unlikely. © 2011 Wiley Periodicals, Inc. Microsurgery, 2012. “
“The prevalence of obesity is rising in Western society. The aim of this meta-analysis was to evaluate the available evidence regarding the effect of obesity on outcomes of free autologous breast reconstruction.