At the optimal concentration (4×10(-6) M) BrZ decreased both embryo yield and conversion to less than
half the value of control embryos. Metabolic studies revealed that BL levels had profound effects on glutathione and ascorbate metabolism by altering the amounts of their reduced forms (ASC and GSH) and oxidized forms [dehydroascorbate (DHA), ascorbate free radicals (AFRs), and GSSG]. Applications of BL switched the glutathione and ascorbate pools towards the oxidized forms, thereby lowering the ASC/ASC+DHA+AFR and GSH/GSH+GSSG ratios. These changes were ascribed to the ability of BL to increase the activity of ascorbate peroxidase (APX) and decrease that of glutathione reductase (GR). This trend was reversed in a BL-depleted environment, effected by BrZ applications. These metabolic
alterations were associated with selleck chemical changes in embryo structure and performance. BL-treated MDEs developed zygotic-like shoot apical meristems (SAMs) whereas embryos treated with BrZ developed abnormal meristems. In the presence of BrZ, embryos either lacked a visible SAM, or formed SAMs in which the meristematic cells showed signs of differentiation, such as vacuolation and storage product accumulation. These Fer-1 research buy abnormalities were accompanied by the lack or misexpression of three meristem marker genes isolated from Brassica napus (denoted Selleck Fer-1 as BnSTM, BnCLV1, and BnZLL-1) homologous to the Arabidopsis SHOOTMERISTEMLESS (STM), CLAVATA 1 (CLV1), and ZWILLE (ZLL). The expression of BnSTM and BnCLV1 increased after a few days in cultures in embryos treated with BL whereas an opposite tendency was observed with applications of BrZ. Compared with control embryos where these two genes exhibited abnormal localization patterns, BnSTM and BnCLV1 always localized throughout the subapical domains of BL-treated embryos in
a zygotic-like fashion. Expression of both genes was often lost in the SAM of BrZ-treated embryos. The results suggest that maintenance of cellular BL levels is required to modulate the ascorbate and glutathione redox status during embryogenesis to ensure proper development of the embryos and formation of functional apical meristems.”
“A spectroscopic ellipsometry compatible approach is reported for the optical study of Si quantum dots (QDs) in Si-rich nitride/silicon nitride (SRN/Si3N4) superlattice, which based on Tauc-Lorentz model and Bruggeman effective medium approximation. It is shown that the optical constants and dielectric functions of Si QDs are strongly size dependent. The suppressed imaginary dielectric function of Si QDs exhibits a single broad peak analogous to amorphous Si, which centered between the transition energies E-1 and E-2 of bulk crystalline Si and blue shifted toward E-2 as the QD size reduced.