The second part of the study was designed as a case-control study (approximately two controls per one case). The criteria for selecting patients were based on a clinical proforma, covering medical, pathological and histopathological records. A total of 129 prostate cancer patients (median age of 70, IQR 63–74 years) who were histologically verified Selleck MK5108 as
having prostate cancer were invited to participate in the project. Patients who had a first-degree relative (brother or father) with a confirmed diagnosis of prostate cancer were excluded in order to avoid familial prostate cancer cases. The samples were used for estimating GST gene frequencies. Both patients and controls were interviewed regarding age, smoking habits, possible chemical exposure, previous and/or current prostate diseases, and incidence of cancer and chronic diseases. The individuals were grouped in never-smokers and ever-smokers. The studied population is described in Table 1. Table 1 General characteristic of the control and prostate
Smad inhibitor cancer patient groups Control group Number (%) of subjects Prostate cancer patients Number (%) of subjects No. 228 129 Smoking status Smokers 51 (22%) 35 (27%) Non-smokers 177 (78%) 94 (73%) PSA (ng/ml, means ± SD) 2,73 ± 6,78 30,46 ± 77,89*** *** p < 0.001 Chemicals Proteinase K was obtained from AppliChem (DE). All the primers, chemicals used for PCR and restriction enzyme, were purchased from Eppendorf (USA). All other chemicals used for DNA isolation were purchased from Sigma Co. (USA). Genotyping Peripheral venous blood was collected in 10 ml heparinized tubes and the specimens were immediately stored at -20°C for genotyping. From both, cases and (-)-p-Bromotetramisole Oxalate controls, genomic DNA was isolated from peripheral leukocytes by proteinase K digestion, phenol/chloroform extraction and ethanol precipitation, dissolved in TE buffer (pH
7.5) and stored at -20°C until genotype R428 purchase analysis. A multiplex polymerase chain reaction (PCR) method was used to detect either the presence or absence of GSTM1 and GSTT1 genes in the genomic DNA samples simultaneously in the same tube; β-globin gene was co-amplified and used as an internal control [14]. This technique does not distinguish between heterozygote and homozygote GSTM1 – and GSTT1 -positive genotypes, but it does conclusively identify the null genotype [15]. Genomic DNA (100 ng) was amplified in a total volume of 25 μl reaction mixture containing 25 pmol of each GST primers (GSTM1: forward 5′-GAA CTC CCT GAA AAG CTA AAG C-3′ and reverse 5′-GTT GGG CTC AAA TAT ACG GTG G-3′, GenBank accession no. NM_146421; GSTT1: forward 5′-TTC CTT ACT GGT CCT CAC ATC TC-3′ and reverse 5′-TCA CCG GAT CAT GGC CAG CA-3′, GenBank accession no.