Laboratory Investigation (2009) 89, 1340-1347; doi:10.1038/labinvest.2009.101; published online 5 October 2009″
“The ability to associate a name to a face is a crucially relevant task in daily life. In this study, we investigated the neuronal basis of face-name retrieval in young subjects using repetitive transcranial magnetic stimulation (rTMS) over the left or right dorsolateral prefrontal cortex (DLPFC). The experimental task was composed of two study phases: an encoding phase and a retrieval phase. During
the encoding phase, subjects saw VE-821 research buy a face (familiar or unfamiliar) followed by a name. During the retrieval phase, they saw the face together with two names and had to choose the name that was correctly associated with the face. rTMS was delivered only during retrieval. In addition, we evaluated the use of memory strategies during the task. Accordingly, subjects were subdivided into two groups: strategy users (SU) and no-strategy users (NSU). No rTMS effects were present for familiar face-name pairs, probably due
to a ceiling effect. However, for unfamiliar face-name pairs, ERK inhibitor the different use of memory strategies resulted in different rTMS effects. The SU group showed a selective interference effect after right DLPFC stimulation, whereas the NSU group showed an effect after left DLPFC stimulation. Importantly, the overall performance of the two groups was comparable. We suggest that during memory retrieval the left DLPFC might be recruited when the subject does not apply deliberately a retrieval strategy whereas there is a shift to the right DLPFC if cognitive control processes that are engaged by strategies are needed to guide episodic retrieval. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Cardiac hypertrophy is a common finding in human patients with inborn errors of long-chain fatty acid oxidation. Mice with either very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD-/-) or
long-chain acyl-coenzyme A dehydrogenase deficiency (LCAD-/-) develop cardiac hypertrophy. Cardiac hypertrophy, OSBPL9 initially measured using heart/body weight ratios, was manifested most severely in LCAD-/- male mice. VLCAD-/- mice, as a group, showed a mild increase in normalized cardiac mass (8.8% hypertrophy compared with all wild-type (WT) mice). In contrast, LCAD-/- mice as a group showed more severe cardiac hypertrophy (32.2% increase compared with all WT mice). On the basis of a clear male predilection, we analyzed the role of dietary plant estrogenic compounds commonly found in mouse diets because of soy or alfalfa components providing natural phytoestrogens or isoflavones in cardioprotection of LCAD-/- mice. Male LCAD-/- mice fed an isoflavone-free test diet had more severe cardiac hypertrophy (58.1% hypertrophy compared with WT mice fed the same diet). There were no significant differences in the female groups fed any of the diets.