In this review we consider findings from sixty-three healthy huma

In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated see more reorienting; decreasing

‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction check details of functional neural activation (and performance) depends

upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic Pomalidomide function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. (C) 2011 Elsevier Ltd. All rights reserved.”
“Broadly neutralizing antibodies

directed against the conserved stalk domain of the viral hemagglutinin have attracted increasing attention in recent years. However, only a limited number of stalk antibodies directed against group 2 influenza hemagglutinins have been isolated so far. Also, little is known about the general level of induction of these antibodies by influenza virus vaccination or infection. To characterize the anti-stalk humoral response in the mouse model as well as in humans, chimeric hemagglutinin constructs previously developed in our group were employed in serological assays. Whereas influenza virus infection induced high titers of stalk-reactive antibodies, immunization with inactivated influenza virus vaccines failed to do so in the mouse model. Analysis of serum samples collected from human individuals who were infected by influenza viruses also revealed the induction of stalk-reactive antibodies. Finally, we show that the hemagglutinin stalk-directed antibodies induced in mice and humans have broad reactivity and neutralizing activity in vitro and in vivo.

Comments are closed.