In the present study, AAF and AI were functionally identified usi

In the present study, AAF and AI were functionally identified using flavoprotein fluorescence imaging. Biotinylated dextran amine (BDA) was injected iontophoretically into the tonotopic bands to 5 kHz and 20 kHz in AAF, and those to 5 kHz, 10 kHz, and 20 EPZ004777 kHz in AI for staining

MGv neurons projecting to the injected sites. MGv neurons projecting to AAF were found in the medial part of MGv, while MGv neurons projecting to AI were found in the lateral part. In the medial part of MGv, areas projecting to 5-20 kHz bands in AAF were aligned along the medio lateral axis. In the lateral part of MGv, areas projecting to 5-20 kHz bands in AI were aligned along the dorso ventral axis. These results indicate that AAF and AI receive auditory information via two different MGv compartments with independent tonotopic axes, respectively. (C) 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.”
“Toxoplasma gondii is a widespread zoonotic pathogen capable of causing serious disease in humans and animals. As an obligate intracellular parasite,

T. gondii relies on the orchestrated secretion of proteins from its apical complex organelles including the multimodular, transmembrane BTK inhibitor micronemal protein 2 (MIC2) that couples recognition of the host cell with cytoskeletal reorganization of the parasite to drive invasion. To probe the basis by which the von Willebrand Factor A (vWA)-Integrin like module of TgMIC2 engages the host cell, we solved the crystal structure of a truncated form of TgMIC2A/I (TgMIC2A/Ic) phased by iodide SIRAS and refined

to a resolution of 2.05 angstrom. The TgMIC2A/Ic core is organized into a central twisted beta SPTLC1 sheet flanked by a-helices consistent with a canonical vWA fold. A restricted basic patch serves as the putative heparin binding site, but no heparin binding was detected in native gel shift assays. Furthermore, no metal was observed in the metal ion dependent adhesion site (MIDAS). Structural overlays with homologous A/I domains reveal a divergent organization of the MIDAS beta 4-alpha 4 loop in TgMIC2A/Ic, which is stabilized through the burial of Phe195 into a deep pocket formed by Gly185. Intriguingly, Gly185 appears to be unique among A/I domains to TgMIC2A/I suggesting that the divergent loop conformation may also be unique to TgMIC2A/I. Although lacking the C-terminal extension, the TgMIC2A/Ic structure reported here is the first of an A/I domain from an apicomplexan parasite and provides valuable insight into defining the molecular recognition of host cells by these widespread pathogens.”
“B-cell acute lymphoblastic leukemia (B-ALL) is often associated with chromosomal translocations leading to the deregulation of proto-oncogenes. MicroRNAs can also be affected by chromosomal alterations and thus contribute to carcinogenesis.

Comments are closed.