At least one other gene of the

At least one other gene of the Sec-dependent pathway of protein export was up-regulated in Δfur, secY. This gene, secY, is a direct target of Fur regulation in Neisseria meningitides [100, 101]. Indeed, we detected a putative Fur binding site upstream of secY (Additional file 2: Table S2). The role of yajC during infection is unknown, but our results selleck screening library suggest Fur controls Sec-dependent protein secretion. NrdR is a global transcriptional regulator that controls expression of oxygen-dependent

find more and independent ribonucleotide reductases [102–104]. Expression of nrdR was up-regulated in Δfur and a putative Fur binding site was identified. Although, deletion of fur results in up-regulation of nrdHIEF [105], a class Ib ribonucleotide reductase, we did not detect increased expression of this operon in our conditions. However, we did detect up-regulation of the class Ia ribonucleotide reductase, nrdAB, in Δfur (Additional file 2: Table S2). The class III oxygen sensitive ribonucleotide reductase, encoded by nrdDG, is encoded in an operon. Expression of nrdD, the first gene of this operon, was down-regulated in Δfur 2.5-fold. (Additional file 2: Table S2). Our data indicate that Fur controls the class Ib and III ribonucleotide reductases, either directly or indirectly, under anaerobic conditions. A putative dehydrogenase (STM1133) was down-regulated 4.2-fold in

the Δfur (Table 3). This gene contains a putative Fur binding site on the reverse DNA strand. Sotrastaurin chemical structure STM1133 is the final

gene in an apparent four gene operon of unknown function (STM1130-1133). The first gene of this operon, STM1130, was also down-regulated 7.9-fold in Δfur (Additional file 2: Table S2); however, a Fur binding site was not identified upstream of STM1130. Interestingly, this operon is composed of the putative N-acetylneuraminic acid mutarotase (STM1130), a putative outer membrane protein (STM1131), a putative sialic acid transporter (STM1132), and a putative NAD (P) binding dehydrogenase (STM1133). Thus, our results suggest Fur controls at least a portion of this operon that may be localized to the bacterial membrane. The importance of these genes during infection is unknown. Several putative genes appear to be under direct control of Fur. Genes that exhibited reduced expression in Δfur were Fenbendazole the putative universal stress protein encoded by ynaF, the putative glutamate synthase (STM2186), the putative sugar kinase (STM3600), and the putative lipoprotein (STM3690). The putative Fur binding site for ynaF and STM3600 is located on the reverse strand for these genes. The mechanism of Fur activation of these putative genes is unknown. In addition, several putative genes exhibited up-regulation in Δfur. A putative glutamic dehydrogenase (STM1795), a putative glutaredoxin (yffB), and a putative protein (yggU), were all up-regulated in Δfur. Interestingly, yffB is predicted to be a glutathione-dependent thiol reductase. The contribution of these genes to infection is unknown.

Comments are closed.