(A,C) 0 and (B,D) 0.03 mol/L. The insets in A and D show the roots images of SiNWs. The TEM characterizations were used to further study nanostructure and crystallinity of PSiNWs. The typical TEM images were shown in Figure 2. The SiNWs show solid roots and rough top, which is respectively shown in Figure 2A and in the inset. When the
etchant contains H2O2, the SiNWs surfaces are covered by numerous mesoporous structure with diameters of about 5 ~ 10 nm. The SAED pattern shows that the MPSiNWs still keep a single crystalline Protein Tyrosine Kinase inhibitor structure. Figure 2 TEM images of SiNWs from moderately doped silicon wafer under various concentration of H 2 O 2 . (A) is the root of SiNWs prepared under etchant with 0 mol/L H2O2; the inset is the top of SiNWs. (B) is prepared under etchant with 0.03 mol/L H2O2; the inset shows the SAED pattern. The lightly doped wafer was also selected as the starting material besides medially doped silicon substrate. The H2O2 plays an important role in fabricating SiNWs through the 2-MACE process, which affects not only the etching rate, but also the morphology, nanostructure, and orientation of SiNWs [24, 25, 30, 31]. Thus, in the HF/AgNO3/H2O2 system, the effect of H2O2 concentration on the nanostructure of lightly doped SiNWs was carefully studied in this part. After the
etching, some silver dendrites formed and covered the wafer, and their sizes were decreased with the increasing H2O2 concentration. Meanwhile, the color of Ag dendrite changed regularly with the increase of H2O2. Without H2O2, the Ag dendrite showed a grey and black, which might be caused Fludarabine chemical structure by the formation of silver oxide. The
dendrite color became shinning silver-white with the increase of H2O2. The above results indicate that the Ag dendrite can be oxidized into Ag+ by H2O2 according to the following Liothyronine Sodium reaction: (1) It can be found that the SiNW structure and morphology are severely affected by the doping levels of wafers by comparing the experiment results in Figures 1 and 3. When the etchant solution has no H2O2, the resulting lightly doped SiNW arrays show sharp top and smooth surface; the length (about 4 μm) is shorter and denser than that of the medially doped one, which indicates that the higher doping level is beneficial for SiNW growth and porosity formation, and also for SiNWs from the HF/H2O2/AgNO3 Adriamycin manufacturer system (by comparing with Figures 1B and 3B). As we know, both Ag+/Ag or H2O2/H2O couples have higher positive equilibrium potentials than silicon EVB. Thus, the holes will be injected into the valence band of silicon with the Ag deposition or reduction of H2O2, which induces silicon substrate oxidization and dissolution, leading to SiNW growth and porosity formation. Figure 3 SEM images of etched lightly doped silicon wafer under various concentration of H 2 O 2 . (A) 0, (B) 0.03, (C,D) 0.1, (E,F) 0.4, and (G) 0.8 mol/L.