[9] Serum samples for anti-HLA analysis in the peri-biopsy period were available for buy GSK2118436 67 of the 86 allograft biopsies; alloantibodies were detected in 55 samples (82%), including DSA in 33 samples (49%). Consistent with the antibody mediation of TG, some studies noted that TG is significantly more common in patients with anti-HLA antibodies, particularly those with DSA.[1, 8, 9] Cai et al. showed significant cross-reactivity
between specific ant-HLA antibodies with multiple HLA antigens due to the presence of shared epitopes among these molecules.[16] Cosio et al. suggested that the absence of anti-donor HLA specificity in one assay does not ensure lack of antibody reactivity to the allograft.[1] Therefore based on the findings in our study, the existence of anti-HLA Palbociclib cell line antibodies, whether DSA or non-DSA, can cause TG. Several recent studies have shown that the presence of anti-HLA antibodies, particularly anti-class II, is associated with TG and a poor
allograft outcome.[17-19] Sis et al. reported that among 51 patients with TG, antibodies to anti-HLA class I and/or II were detected in over 70% at the time of diagnosis of TG; anti-HLA class II antibodies were detected in 64% of patients, with the antibodies being donor-specific in two-thirds of the cases.[8] In this study, anti-HLA class II antibodies were detected in 48 samples (72%), and class II DSA in 31 samples (46%). Taking into account this finding, it appears that the existence of anti-HLA class II antibodies, especially class II DSA, may play a key role in the progression of TG. As for DSA- and HLA-negative TG cases, we speculated that in these cases, the antibodies causing TG were not
directed against the HLA antigens. Recently, some reports have referred to antibodies directed against non-HLA antigens, such as major-histocompatibility-complex (MHC) class I-related chain A (MICA) antigens, MHC class I-related chain B (MICB) antigens, platelet-specific antigens, molecules of the rennin-angiotensin pathway, and polymorphisms involving chemokines and their receptors.[20-25] These antibodies could cause DSA- and HLA-negative TG. In this study, the primary immunosuppressive protocol in many patients consisted of tacrolimus (TAC) and mycophenolate mofetil (MMF), with the addition, in some ADAMTS5 cases, of basiliximab and rituximab. Deterioration of the renal allograft function after the biopsy was seen in 31 patients (62%), with loss of the graft in 11 (16%) cases. Thus, the prognosis of grafts exhibiting TG was not very good even under the present immunosuppressive protocol. Use of TAC plus MMF rescue therapy has been a preferred intervention based on the beneficial effect of MMF in c-AMR.[19, 26-28] Theruvath et al. reported a beneficial effect of this rescue therapy in patients with biopsy and serologically proven c-AMR.[29] However, our cases did not appear to benefit from this current immunosuppressive protocol.